Кто был первым создателем асу. Цель и методологические принципы разработки асу. Основные проблемы и задачи, требующие особого внимания при их решении

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

К наиболее важным задачам, решаемым с использованием АСУ предприятием можно отнести следующие:

-Бухгалтерский учет

Это одна из первых областей применения информационных технологий и наиболее часто реализуемая на сегодняшний день задача, поскольку задачи бухучета достаточно легко формализуются.

Однако разработка систем автоматизации бухучета является достаточно трудоемкой задачей. Это обусловлено повышенными

требованиями в отношении надежности и максимальной простоты и удобства в работе.

-Управление финансовыми потоками

Необходимость решения задач управления финансовыми потоками обусловлено критичностью этой области управления предприятием к ошибкам. Неправильно построив систему расчетов с покупателями и поставщиками, можно спровоцировать кризис наличности даже при налаженной сети закупок, сбыта и хорошем маркетинге.

-Управление складом, ассортиментом, закупками

Автоматизация процесса анализа движения товаров позволяет ответить на главный вопрос – как получить максимальную прибыль при постоянной нехватке средств.

«Заморозить» оборотные средства в чрезмерных складских запасах – самый простой способ сделать любое предприятие потенциальным банкротом.

-Управление производственными процессами

Основным механизмом здесь является планирование и оптимальное управление производственным процессом.

Автоматизация решения этой задачи позволяет грамотно планировать, учитывать затраты, проводить технологическую подготовку производства, оперативно управлять процессом выпуска продукции в соответствии с производственной программой и технологией.

-Документооборот

Хорошо отлаженная система документооборота отражает реальное текущее состояние дел на предприятии и дает руководству возможность воздействовать на нее.

5. СХЕМА ВЗАИМОДЕЙСТВИЙ ОСНОВНЫХ ФУНКЦИЙ УПРАВЛЕНИЯ В ФУНКЦИОНАЛЬНОЙ ПОДСИСТЕМЕ АСУ ПРЕДПРИЯТИЕМ

Предприятие – это многоуровневая система, в которой объект управления вышестоящей системы превращается в субъект управления нижестоящей системы.

Например, начальник цеха из объекта управления директора цеха превращается в субъект управления для начальника участка (мастера). Начальник участка (мастер) из объекта управления начальника цеха сам становится субъектом управления для рабочих своего участка.

Отметим, что структура взаимодействия основных функций управления во всех подсистемах идентична и включает: планирование, регулирование, контроль, анализ, учет.

В каждой из функциональных подсистем системы управления предприятием осуществляется процесс управления. Это означает, что в ней есть управляющая часть и объект управления .

Для предприятия в целом объектом управления является производственный процесс. Роль управляющих частей на предприятии играют управленческие службы.

Взаимодействие между управляющей частью(субъектом управления) и объектом управления (управляемым процессом) происходит посредством реализации функций управления.

Можно выделить, по крайней мере, шесть таких функций:

1)- планирование;

2)- регулирование;

4)- анализ;

5)- контроль.

Схема взаимодействия основных функций управления представлена на Рис.2.

Исходные данные

(в том числе план

верхнего

Хпл.(t) ΔХ(t) Хр(t) X(t)

Учет
Хф(t)

Рис.2. Схема взаимодействий основных функций управления

в функциональной подсистеме (системе)

Планирование – это определение поведения управляемого процесса в будущем в детерминированном виде (величина Хпл.(t)).

Регулирование – обеспечение функционирования управляемых процессов в рамках заданных параметров (Хф(t) = Xпл.(t).

Контроль – это определение отклонений между запланированным и фактическим состоянием управляемого процесса в дискретные моменты времени (ΔХ(t) = Xпл.(t)- Хф(t)).

Учет – определение фактического состояния управляемого процесса в дискретные моменты времени (Хф(t)).

Анализ – это подведение итогов осуществления процесса управления за период управления, выявление факторов, которые повлияли на степень достижения запланированных результатов.

Прогнозирование – это определение на будущее вероятностных характеристик управляемого процесса.

Таким образом, планирование заключается в выработке плановой «траектории» управляемого процесса X(t) на период планирования. Учет, т.е. измерение, состоит в определении в заданные моменты времени истинного состояния процесса Xф(t). Контроль позволяет определить отклонение Хф(t) от Xпл.(t). Регулирование состоит в определении скорректированного плана Хр(t), т.е. по существу является решением задачи планирования при новых начальных условиях.

Как видим, в каждой из подсистем независимо от ее уровня реализуется функция планирования. И вообще, каждая из систем является подсистемой лишь по отношению к вышестоящей подсистеме. Поскольку функциональные подсистемы управления предприятием – часть единой системы управления, то цели функционирования подсистем должны быть согласованы. Содержание планирования в каждой из подсистем будет различным исходя из места и роли подсистемы в общей структуре системе управления предприятием.

6. ЭТАПЫ ПРИМЕНЕНИЯ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В УПРАВЛЕНИИ ПРЕДПРИЯТИЕМ

Некоторые исследователи полагают, что каждое новое поколение автоматизированных систем и информационных технологий повышает производительность труда не менее чем в 1,5 раза.

Следует подчеркнуть, что уже к концу 40-х годов ХХ века в США 50% работающих было занято в сфере переработки информации. Темпы роста промышленного производства в десятки раз превышали аналогичный показатель в обработке информации.

Применение вычислительной техники в управлении производством началось в 50-е годы. Первый компьютер для этих целей был использован американской компанией General Electric в 1954 году. Компьютер использовался для снижения стоимости и трудоемкости работ по управлению.

В частности, автоматизировались расчеты в бухгалтерии, на складах, формировалась различного рода отчетность. В качестве программного обеспечения использовались отдельные программы.

В 60-е годы получили развитие методы, направленные на совершенствование систем принятия решений. К ним, в частности, относятся методы линейного программирования, теории расписаний, управления проектами. Появились первые пакеты прикладных программ для решения задач управления производством.

Однако, в целом перечисленные системы и экономико-математические методы применялись редко и для решения локальных задач.

К середине 60-х годов, в СССР были разработаны первые модели внутризаводского планирования.

В 70-е годы программное обеспечение для целей управления использовалось уже многими предприятиями. Была разработана концепция построения производственных автоматизированных информационных систем управления.

Цель концепции – обеспечение управленцев всех уровней информацией необходимой для решения задач управления. Наиболее важными из были: прогнозирование спроса, материально -техническое обеспечение, управление запасами, планирование , оперативное управление производством .

Одной из таких концепций была концепция «Планирование материальных потребностей» (MRP – Material Requirements Planning).

Дальнейший процесс интеграции функций управления привел к созданию формированию концепции «Планирование производственных ресурсов» (MRPII – Manufacturing Resource Planning).

В 80-е годы на первый план выход проблема создания Компьютерных интегрированных производств (CIM – Computer Integrated Manufacturing).

Для систем управления этого класса были характерны следующие признаки:

1) использование при проектировании систем управления производством концепции ERP – Enterprise Resource Planning (Планирование ресурсов предприятия);

2) Интеграция систем управления типа ERP с системами автоматизированного проектирования (САПР) (CAD – Computer-aided design) и системами автоматизации производства (АСУ ТП) (CAM - Computer-aided Manufacturing).

Примечание: в современной литературе это системы типа CAD/CAM.

В 90-е годы получают развитие системы принятия решений , экспертные системы и системы искусственного интеллекта .

Новый этап развития автоматизированных систем был связан с появление ПЭВМ. Главной особенностью этого этапа стало приближение вычислений непосредственно к рабочему месту управленца. Эти рабочие места получили название АРМ (Автоматизированное рабочее место) пользователя.

Новые технические средства и математическое обеспечение позволили сделать качественный скачек в создании дружественного пользовательского интерфейса.

В 90-е годы получил развитие процесс внедрения комплексных решений по автоматизации управления предприятиями на базе локальных вычислительных сетей, мощных систем управления базами данных (СУБД), новых технологий проектирования и разработки.

7. ТЕХНОЛОГИИ ПОСТРОЕНИЯ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ

В конце 60-х годов ХХ века, в связи с бурным развитием вычислительной техники, начались активные попытки оптимальной автоматизации и информатизации бизнеса. Создавались новые концепции построения автоматизированных систем управления и совершенствовались уже существующие.

Основными целями автоматизации производственных предприятий являлись: точный расчет себестоимости продукции, ее анализ, понижение затрат в процессе производства и повышение производительности в целом, за счет эффективного планирования производственных мощностей и ресурсов.

Результатом оптимизации этих параметров являлись понижение конечной цены готовой продукции и повышение общей производительности. Это немедленно отражалось на конкурентоспособности и рентабельности предприятия.

Алгоритмизация процессов управления предприятием является чрезвычайно сложной задачей. Ее решение наталкивается на ряд проблем:

1)какие параметры, характеризующие состояние предприятия, надо учитывать;

2)какой набор иерархических моделей наилучшим образом подходит для решения задач планирования и управления;

3)для каких целей, и каким образом наиболее эффективно модно применять экономико-математические методы;

4)как использовать методы управления проектами.

Все предприятия являются уникальными в своей финансовой и хозяйственной деятельности. Однако прогресс в разработке программных решений позволил выделить задачи общие для самых разных видов деятельности: различные отрасли промышленности, телекоммуникации, банки и т.д.

К таким задачам можно отнести:

Управление финансовыми и материальными ресурсами;

Расчеты с покупателями и поставщиками;

Управление основными фондами;

Бизнес-планирование и учет;

Бухгалтерия;

Управление кадрами и др.

В результате поиска решений в области автоматизации производственных систем в середине 60-х годов Американское общество управления производством и запасами APICS (American Production and Inventory Control Society) сформулировало ряд принципов, по которым предлагалось строить как модели предприятий, так и основные производственные процессы на них.

Примечание:

APICS основано в 1957 году и сегодня объединяет около 70000 специалистов из многих стран мира, представляющих около 20000 компаний. Среди направлений деятельности общества – распространение информационных материалов; оповещение о публикациях в области образования и переподготовки; реализация двух программ сертификации специалистов – по управлению производством и запасами (CPIM) и интегрированными ресурсами (CIRM); проведение очных и заочных конференций. Общество периодически издает словарь ”APICS’s Dictionary”, который содержит сотни терминов, относящихся к автоматизированным системам управления. На сайте APICS в Интернет представлены списки литературы по различным вопросам построения автоматизированных систем.

7.1. КОНЦЕПЦИЯ ПОСТРОЕНИЯ СИСТЕМ УПРАВЛЕНИЯ MRP

Впервые принципы, сформулированные обществом по управлению производством и запасами были применены для решения задач планирования потребности в материалах и получили название концепции (технологии, методологии, стандарта) MRP – Планирование материальных ресурсов.

Примечания: 1. Концепция MRP и все последующие концепции построения автоматизированных систем – это формализованная совокупность понятий и процессов, с помощью которых можно описать работу предприятия. Их можно описать как набор инструкций (алгоритм): сделай это так, передай данные или материалы в таком-то виде туда, сделай запись о выполненных операциях там-то. Они интуитивно понятны любому управленцу или менеджеру.

Ценность концепций построения систем управления заключается в том, что:

1) они появились в результате анализа деятельности реально работающих предприятий;

2) их развитие происходит эволюционно, очередная концепция поглощает предыдущие;

3) они доказали свою эффективность;

4) они охватывают деятельность предприятия в целом.

2. Когда мы говорим о системе, например система типа MRP или MRP-система, то имеется в виду, что речь идет о программном продукте, в котором тем или иным образом реализованы основные положения данной концепции.

Основные положения концепции MRP формулируются следующим образом:

1)заказы снабжения и производства формируются на основе заказов реализации и производственных графиков;

2)при выполнении заказов учитываются ограничения ресурсов;

3)обеспечивается минимизация запасов на складах;

4)модель производственного процесса описывается как поток взаимосвязанных заказов.

5)выполнение заказа завершается к тому моменту, когда он необходим.

По сути, MRP-технология представляет собой алгоритм оптимального управления заказами на готовую продукцию, производством и запасами сырья и материалов, которая реализуется с помощью компьютерной системы.

MRP-системы позволяют оптимально загрузить производственные мощности, и при этом закупать именно столько материалов и сырья, сколько необходимо для выполнения текущего плана заказов и именно столько, сколько возможно обработать за соответствующий цикл производства. Тем самым планирование текущей потребности в материалах позволила разгрузить склады как сырья и комплектующих, так и склады готовой продукции.

Собственно MRP-технология является реализацией двух известных принципов JIT (Jist in Time – Вовремя заказать) и KanBan (Вовремя произвести).

В основе этой концепции лежит понятие BOM (Bill OF Material – спецификация изделия). Спецификация, за которую отвечает конструкторский отдел, показывает зависимость спроса на сырье и комплектующие в зависимости от плана выпуска готовой продукции.

При этом очень важную роль играет время. Для того, чтобы учитывать время, системе необходимо знать технологическую цепочку, т.е. последовательность операций и их продолжительность.

На основании плана выпуска продукции, спецификации (ВОМ) и технологической цепочки осуществляется расчет потребностей в материалах, привязанный к конкретным срокам.

Очевидно, что идеальная реализация концепции MRP невыполнима в реальной жизни. Например, из-за возможности срыва сроков поставок по различным причинам и возможности последующей остановки производства. Поэтому в жизненных реализациях MRP-систем на каждый такой случай предусмотрен заранее определенный страховой запас сырья и комплектующих(safety stock ) .

Объем страхового запаса определяется руководством предприятия.

Базовые элементы и функции MRP-систем можно представить следующей схемой (Рис.3)



Рис.3. Базовые элементы и функции МRP-системы

7.2. КОНЦЕПЦИЯ ПОСТРОЕНИЯ СИСТЕМ УПРАВЛЕНИЯ MRPII

После появления концепции MRP начали активно создаваться и продаваться компьютерные программы, называемые МRP-системами, которые реализовывали ее принципы.

Однако анализ существующей ситуации в мировом бизнесе и ее развития, показал, что все большую составляющую себестоимости продукции занимают затраты напрямую не связанные с процессом и объемом производства.

На любом производственном предприятии существует набор принципов планирования, контроля и управления функциональными элементами. Такими элементами являются производственные цеха, функциональные отделы, аппарат управления и т.д.

Возникает вопрос, как создать замкнутую логическую систему, которая позволит ответить на следующие простые вопросы:

1) Что мы собираемся производить?

2) Что для этого нужно?

3) Что мы имеем в данный момент?

4) Что мы должны получить в итоге?

Одной из основ эффективной деятельности предприятия (производственного и непроизводственного) является правильно поставленная система планирования. Собственно система планирования и призвана содействовать ответам на поставленные вопросы.

Эта система должна четко отвечать на вопрос: «Что нам конкретно нужно в тот или иной момент времени в будущем?».

Для этого она должна планировать потребности в материале, производственные мощности, финансовые потоки, складские помещения и т.д., принимая во внимание текущий план производства продукции.

Возникла концепция MRPII (Manufacturing Resource Planning – Планирование производственных ресурсов).

Эта концепция является результатом развития концепции MRP.

В концепции MRP при планировании потребности в материалах производственные мощности рассматривались как неограниченные. В концепции MRPII содержится специальная функция, которая позволяет согласовать потребности в материалах с возможностями производства. Эта функция получила название CRP (Capacity Requirement Planning – Планирование производственных мощностей).

Последовательность реализации этапов работы в технологии MRPII представлена на следующей схеме (Рис. 4).



Рис. 4. Схема этапов технологии MRPII

Системы типа MRPII представляют собой интеграцию большого количества отдельных модулей. Результаты работы каждого модуля анализируются всей системой в целом, что обеспечивает ее гибкость по отношению к внешним факторам.

MRPII-система включает следующие функциональные модули:

1.Планирование развития бизнеса

2.Планирование продаж и деятельности

3.Планирование производства

4.Планирование потребностей в материалах (MRP)

5.Планирование производственных мощностей (CRP)

6.Разработка графика выпуска продукции

7.Различные системы оперативного управления производством

8.Контроль выполнения плана использования производственных мощностей

9.Контроль выполнение плана потребности в материалах

10.Осуществления обратной связи.

Структура MRPII охватывает все основные функции планирования производства сверху вниз.

Для каждого уровня планирования в MRPII характерны своя степень детализации плана, вид условий и ограничений. Эти параметры могут изменяться для каждого уровня в широком диапазоне в зависимости от характера производственного процесса, т.е. настраиваться на конкретное предприятие.

Кратко рассмотрим характеристики основных функциональных модулей MRPII-системы.

Планирование развития бизнеса. Планирование долгосрочное. План составляется с стоимостном выражении. Фактически план утверждает, что компания должна произвести и продать. Какое количество средств необходимо инвестировать в разработку и развитие продукта, чтобы выйти на планируемый уровень прибыли.

Выходным результатом работы модуля является бизнес-план.

Планирование продаж и деятельности. Оценивает, обычно в единицах готовой продукции (как правило, от 5 до 10), какими должны быть объем продаж и динамика продаж, чтобы был выполнен принятый бизнес-план. При этом производственные мощности не учитываются или учитываются укрупненно. План продаж носит среднесрочный характер.

Планирование производства. План продаж по всем видам готовой продукции преобразуется в объемный или объемно-календарный план производства видов продукции. Для каждого вида продукции формируется своя собственная программа производства. Совокупность производственных программ для каждого вида продукции и является производственным планом предприятия в целом.

В планах в качестве планово-учетных единиц выступают усредненные единицы продукции. Например, переднеприводные легковые автомобили, без уточнения их моделей.

Планирование потребностей в материалах (MRP). На основе производственной программы для каждого вида продукции определяется требуемое расписание закупки и/или внутреннего производства всех материалов и комплектующих для этих изделий.

Планирование производственных мощностей (CRP). Модуль преобразует план производства в конечные единицы загрузки рабочих мощностей (станков, рабочих, лабораторий и т.д.).

Разработка графика выпуска продукции. План производства преобразуется в график выпуска продукции. Как правило, это среднесрочный объемно-календарный план. Этот план задает количество конкретных изделий со сроками их изготовления.

Различные системы оперативного управления производством. В этом модуле формируются оперативные планы-графики. В качестве планово-учетных единиц могут выступать детали, сборочные единицы, детале-операции и т.п. Период планирования от нескольких дней до месяца.

Осуществления обратной связи. Этот модуль позволяет решать проблемы, возникающие с поставщиками комплектующих изделий, дилерами и партнерами. Обратная связь особенно необходима при изменении отдельных планов, оказавшихся невыполненными и подлежащих пересмотру.

Схематически, алгоритм работы MRPII-системы можно отобразить следующей схемой (Рис. 5).

Длительный период эксплуатации MRPII-систем позволил достичь роста эффективности работы предприятий. Однако, был выявлен ряд присущих этим системам недостатков, в том числе:

1) Ориентация системы управления предприятием исключительно на имеющиеся заказы, что затрудняет принятие решений на среднесрочную перспективу.

2) Недостаточное насыщение системы управления функциями управления затратами.

3) Отсутствие интеграции с системами управления финансами и персоналом

4) Слабая интеграция системы управления с системами автоматизации проектирования изделий (САПР) и системами автоматизации производства (АСУТП)

7.3 КОНЦЕПЦИЯ ПОСТРОЕНИЯ СИСТЕМ УПРАВЛЕНИЯ ERP

Концепция ERP (Enterprise Resource Planning – “Планирование ресурсов предприятия») появилась в начале 90-х годов и подтвердила свою жизнеспособность.

Ее появление было обусловлено необходимостью устранения недостатков присущих системам типа MRPII.

Системы этого класса в большей степени ориентированы на работу с финансовой информацией для решения задач управления предприятием с территориально распределенными ресурсами, т.е. так называемых корпораций.

Важность задач учета и управления финансами не вызывает сомнений.

Поэтому производственные функции MRPII-систем были дополнены модулями для решения трех категорий финансовых задач:

Финансовый учет;

Управленческий учет;

Управление финансами.

В соответствии с международной практикой, бухгалтерский учет включает в себя два направления:

- финансовый учет (Financial Accounting), который ориентирован преимущественно на внешних пользователей финансовой информации;

- управленческий учет (Managerial Accounting), ориентированный на принятие управленческих решений внутри предприятия.

В части финансового учета ERP-системы обеспечивают учет операций с дебиторами и кредиторами, материально-производственных запасов, основных средств и нематериальных активов (с начислением амортизации), учет производственных операций и другие функции бухгалтерского учета.

ERP-системы обеспечивают ведение бухгалтерского учета не только в соответствии с национальным законодательством, но и позволяют составлять отчетность в соответствии с международными стандартами МСФО (IAS) и GAAP.

Кроме этого, ERP-система позволяет автоматизировать бухгалтерский документооборот и отчетность.

Управленческий учет (Managerial Accounting) ориентирован, прежде всего, на внутренних пользователей, включая руководителей предприятия.



нет нет

да да



Рис. 5. Схематический алгоритм работы MRPII-системы

Отметим, что если правила финансового учета и финансовой отчетности регламентируются законодательством, то методология управленческого учета определяется самим предприятием.

С точки зрения ERP-системы, предприятие состоит из некоторого числа производственных цехов, каждый из которых включает в себя несколько рабочих центров. Каждый из рабочих центров может выполнять несколько технологических операций.

Прямые материальные затраты (сырье, материалы, комплектующие и т.д.) учитываются на основе спецификации изделия.

Накладные расходы подлежат распределению между производимыми изделиями на основе баз распределения и ставок поглощения.

Современные ERP-системы способны поддерживать маржинальный метод учета косвенных затрат и методфункционально-стоимостного учета.

Управление финансами. Одна из основных задач финансового менеджера – обеспечить ликвидность предприятия, чтобы предприятие в любой момент времени было способно выполнить свои финансовые обязательства.

Возможности ERP-систем в части регулирования денежных потоков основаны на том, что в системе имеется вся необходимая для этого информация, включая детали расчетов с поставщиками, заказчиками и персоналом.

В ERP-системах добавлены механизмы управления транснациональными корпорациями, включая поддержку нескольких часовых поясов, языков, валют, систем бухгалтерского учета и отчетности.

Эти отличия в меньшей степени затрагивают логику и функциональность систем, а в большей степени определяют их инфраструктуру (интернет/интранет) и масштабируемость – до нескольких тысяч пользователей.

При этом резко возрастают требования к надежности, гибкости и производительности программного обеспечения и вычислительных платформ, на которых реализуются системы.

ERP-система не может решить всех задач управления предприятием и является как бы основой (хребтом), на базе которой выполняется интеграция с другими приложениями уже используемыми на предприятии (например, системами автоматизации проектирования, технологической подготовки производства, управления технологическими процессами и др.).

В новых системах ERP больше внимания уделяется средствамподдержки принятия управленческих решений .

Системы типа ERP пополняются следующими функциональными модулями:

· прогнозирования;

· управления проектами и программами;

· ведения информации о составе продукции;

· ведения информации о технологических маршрутах;

· управления затратами;

· управления финансами;

· управления кадрами.

Прогнозирование . Это оценка будущего состояния или поведения внешней среды или элементов производственного процесса.

Цель прогнозирования – оценить требуемые параметры в условиях неопределенности. Прогнозирование может носить как самостоятельный характер, так и предшествовать планированию.

Управление проектами и программами . В производственных системах, предназначенных для выпуска сложной продукции, собственно производство является одним из этапов полного производства.

Ему предшествуют проектирование, конструкторская и технологическая подготовка. Для сложной продукции характерны: большая длительность цикла производства; большое количество смежников; сложность внутренних и внешних связей.

Из этого и следует необходимость управления проектами и программами в целом и включение соответствующих функций в систему управления.

Ведение информации о составе продукции . Эта часть системы управления обеспечивает управленцев и производственников информацией требуемого уровня о продукции, комплектующих изделиях, сборочных единицах, деталях, материалах, а также об оснастке и приспособлениях. Эта информация используется также при планировании потребностей в материальных ресурсах.

Ведение информации о технологических маршрутах . Для решения задач оперативного управления производством необходима информация о последовательности операций, входящих в технологические маршруты, длительности операций и количестве исполнителей или рабочих мест, требуемых для их выполнения.

Управление запасами . Эта подсистема системы управления оценивает работу производственных и других подразделений с точки зрения затрат. Здесь выполняются работы по определению плановых и фактических затрат. Задача данной подсистемы – обеспечить связь между управлением производством и управлением финансовой деятельностью. Это обеспечивается путем решения задач планирования, учета, контроля и регулирования затрат.

Данная информация используется для выработки управленческих решений, оптимизирующих экономические показатели предприятия.

Управление финансами . В этой подсистеме решаются задачи управления финансовой деятельностью предприятия. Практически во всех зарубежных системах в нее входят четыре модуля:

1. Главная бухгалтерская книга;

2. Расчеты с заказчиками;

3. Расчеты с поставщиками;

4. Управление основными средствами.

Управление кадрами . В данной подсистеме решаются задачи управления кадровыми ресурсами предприятия, связанные с набором, штатным расписание, переподготовкой, продвижением по службе, оплатой и т.п.

Таким образом, ERP является улучшенной модификацией систем типа MRPII.

Цель системы - интегрировать управление всеми ресурсами предприятия, а не только материальными.

Такое расширение функций в концепции ERP с одной стороны приводит к повышению эффективности управления предприятием, а с другой стороны, увеличивает масштабы системы и ее сложность.

В концепции ERP решение о включении изделия в график выпуска продукции может приниматься не только на основе реально имеющемся спросе, но и основе прогноза спроса.

Это расширяет диапазон применения системы управления и делает ее более гибкой и оперативной к изменениям внешней среды.

Среди преимуществ ERP-систем можно выделить:

1. Снижение себестоимости продукции за счет увеличения эффективности управления;

2. Увеличение выхода продукции на рынок;

3. Улучшение качества продукции и снижение брака.

В то же время ERP-системы имеют и недостатки: функции таких систем ограничены производством и администрированием. В системе не представлены функции продаж, маркетинга и инновационные механизмы, реагирование на изменения рынка осуществляются с запаздыванием, эффективность операций может быть скопирована и улучшена конкурентами.

На протяжении 1994-1996 годов объем продаж ERP-систем возрастал примерно на 40% в год.

Новые идеи и методы ERP

К середине 90-х годов некоторые из положений концепции ERP входят в противоречие с требованиями к управлению в динамических производственных системах. Заказчики продукции требуют как можно меньшей длительности выполнения заказов в сочетании с высокой точностью выдерживания сроков. Часто эти сроки измеряются уже не днями и неделями, а часами и минутами.

Кроме этого, все отчетливее проявляется такое требование к системам управления, как сочетание массового характера производства с индивидуальным исполнением изделий (mass customization).

Можно выделить следующие направления совершенствования концепций построения автоматизированных систем управления предприятиями:

1. Повышение степени детализации при планировании мощностей, что позволяет принимать более обоснованные плановые решения;

2. Появление новых информационных технологий, позволяющих одновременно повышать степень детализации и решать в реальном масштабе времени задачи анализа и моделирования;

3. Рассмотрение задач планирования с учетом ограничений на доступные материальные ресурсы и мощности;

4. Формирование плановых решений одновременно для многих заводов (предприятий);

5. Улучшение обратных связей в виде задач учета фактического состояния процессов за счет повышения точности и оперативности;

6. Широкое применение методов оптимизации плановых решений;

7. Динамический подход к информации о производственных циклах.

Hазвитие идей, методов и средств управления предприятиями привело к появлению технологий нового поколения. Это технология APS (Advanced Planning and Scheduling) – «Синхронноепланирование и оптимизация»).

Технология APS обеспечивает синхронное планирование потребности в материалах и мощностях. В процессе планирования имеющиеся мощности с учетом всех фактических ограничений, известных на момент планирования, сопоставляются с текущими расчетными значениями рабочей загрузки. В итоге производственные планы составляются с высокой оперативностью. Появляется возможность определить реальные сроки выполнения заказа уже в момент его приема, а затем контролировать соблюдение этих сроков. Система дает возможность составить точный план выпуска с учетом всех производственных ресурсов: оборудования, персонала, сырья, инструментов, необходимых для поставки продукции точно в обещанный срок.

Эта технология включает в себя две части:

Планирование производства и снабжения;

Диспетчеризацию производства.

Первая часть технологии похожа на алгоритм MRPII. Существенное отличие заключается в том, что в технологии APS согласование потребностей в материалах и производственных мощностей происходит не итерационно, а синхронно, что сокращает время планирования.

Это особенно актуально для позаказного производства, а также в условиях жесткой конкуренции в сроках выполнения заказа и необходимости точного соблюдения этих сроков.

Вторая часть технологии – диспетчеризация производства обеспечивает возможность согласования учета различного рода ограничений с элементами оптимизации.

Обычно ASP-системы представляют собой объединение четырех взаимосвязанных процессов:

· Планирование производственной цепочки;

· Планирование деятельности предприятия;

· Производственное планирование;

· Оценка возможности выполнения.

Основная цель создания автоматизированной системы управления-получение экономических преимуществ за счет улучшения качества управления организационно-технологическим процессом.

Производственно-хозяйственные цели развития

Повышение качества оказываемых услуг;

Увеличение производительности труда работников;

Увеличение объема оказываемых услуг;

Усовершенствование системы документооборота;

Повышение доходности;

Сокращение сроков формирования и обработки информации путем исключения дублирования ввода информации и оперативной ее обработки.

Повышение действенного контроля за ходом производственного процесса на основе обработки достоверной и оперативной информации и своевременного реагирования на имеющиеся отклонения;

Повышение оперативности взаимодействия различных подразделений гостиничного комплекса;

Повышение эффективности и удобства работы служащих;

Обеспечение безопасности и надежности работы системы;

Снижение непроизводительных расходов;

Улучшение показателей ремонта-обслуживания периферийного оборудования и средств телекоммуникаций при организации своевременной диагностики и прогнозирования их состояния;

Мероприятия по совершенствованию форм, методов и средств управления будут эффективными лишь в том случае, если они опираются на достоверные знания о закономерностях, определяющих структурно-функциональную организацию системы, технологических особенностях выполнения административными органами управленческих функций, условиях взаимодействия с другими организациями и учреждениями. Это положение в полной мере справедливо и по отношению к проблеме создания АСУ: чтобы целенаправленно решать задачи автоматизации процессов управления, необходимо тщательно исследовать объект автоматизации. Поэтому основополагающим этапом в общей цепи работ, связанных с проектированием и созданием АСУ, является изучение существующей системы управления.

Целями работ, выполняемых на данном этапе, являются:

Всестороннее обследование и детальное описание существующей системы управления;

Анализ результатов обследования и выявление факторов, оказывающих отрицательное влияние на качество реализации задач управления;

Этап изучения существующей системы имеет первостепенное значение для всей последующей работы по автоматизации процессов управления, так как результаты исследований, выполненных на этом этапе, позволяют объективно охарактеризовать и оценить состояние системы на момент изучения, сформулировать цели автоматизации, определить масштабы предстоящих работ, предварительно оценить затраты на модернизацию системы.

Это дает возможность уже на ранних стадиях проектирования сформировать общие принципы построения АСУ и уточнить круг задач, возлагаемых на систему. На этой основе вырабатываются рекомендации для всех этапов разработки АСУ, и определяется степень автоматизации процессов управления на отдельных этапах, а также требования к показателям эффективности функционирования АСУ, которые нужно достигнуть на каждом этапе ее создания.

Исследование существующей системы управления основывается на научном анализе назначения и основных принципов структурно-функционального построения данной организации, относящихся к формам управления, распределению задач управления между функциональными подсистемами, порядку взаимодействия органов управления между собой и т.д. Специфические особенности систем организационного управления (наличие сложной цели, многообразие составных элементов и связей между ними, временная и пространственная взаимосвязь процессов функционирования) определяют, в свою очередь, методологические особенности их анализа и изучения. Они проявляются, прежде всего, в системном подходе к решению задач анализа, в принципах формирования исследовательских коллективов и в применении специфического для системного анализа научного метода.

В основе системного подхода к анализу обследуемой организации лежит представление о взаимосвязанности и взаимозависимости происходящих в ней явлений, о более или менее сильном влиянии процессов, протекающих в любом функциональном органе системы, на характер деятельности ее частей. Это означает, что для получения достаточно полного представления об особенностях изучаемой организации и для определения наиболее рациональных путей ее совершенствования и развития необходимо установить все наиболее существенные взаимосвязи между ее функциональными частями и реализуемыми в них процессами, а также определить степень влияния их на поведение всей системы как единого целого.

Однако для того чтобы представить организацию как единое целое, недостаточно знать деление ее на части и особенности взаимодействия этих частей. В организационных системах, включающих большие коллективы людей и разнообразные технические средства, функции управления и возникающие в ходе их реализации ситуации отличаются нередко исключительной сложностью. Поэтому для исследования сущности процессов и явлений, происходящих в системах этого класса, требуется применять для их анализа разнообразные научные методики, чтобы рассмотреть различные аспекты функционирования системы (экономические, социологические, инженерные, психологические и т.д.). Отсюда вытекает требование комплексного подхода к решению задач анализа систем, привлечения в состав исследовательских коллективов и групп специалистов различного профиля. Обычно это требование реализуется при разработке программы обследования существующей системы и формирования существующего состава исполнителей работ.

Применение научных методов для анализа любых проблем обычно предполагает возможность экспериментирования. В организационных системах эти возможности весьма ограничены, а нередко и вообще отсутствуют. Поэтому при изучении систем организационного управления в качестве основного инструмента исследований широко применяются методы математического моделирования. Описывая структуру системы в количественных терминах, модели позволяют изучать различные стороны ее функционирования, проводить символическое исследование поведения системы при изменении тех или иных ее свойств, оценивать влияние разнообразных внешних факторов на характер протекания процессов, реализуемых в системе, определять наиболее реальные пути и способы улучшения системных характеристик. При этом данные об особенностях функционирования изучаемой организации обычно накапливаются на основе наблюдения деятельности органов управления, изучения организационной структуры системы, анализа документооборота, опроса должностных лиц и т.д.

Система организационного управления в отделе отличается существенным своеобразием функций, задач и форм управления, уровнем самостоятельности отдельных подсистем и объектов, характером и содержанием связей между органами различных уровней управления. Поэтому обследование существующей системы, анализ его результатов и особенно их интерпретация наряду с использованием положительного опыта, накопленного при выполнении аналогичных работ по исследованию других систем управления, предполагают также всесторонний учет специфики данной системы и особенностей, протекающих в ней процессов, так как часто “благодаря большому разнообразию внешних условий, при которых они конструируются, история создания одной системы лишь в очень малой степени может напоминать историю создания другой”.

Успешное решение задач обследования существующей системы управления во многом определяется качеством организационного обеспечения связанных с ним работ, включающего распределение работ между исполнителями, координацию деятельности исследовательских коллективов, установление деловых контактов между ними, определение ответственности конкретных исполнителей за выделенные участки работ.

Автоматизированная система управления или АСУ - комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п. Термин "автоматизированная", в отличие от термина "автоматическая" подчёркивает сохранение за человеком-оператором некоторых функций, либо наиболее общего, целеполагающего характера, либо не поддающихся автоматизации. АСУ с Системой поддержки принятия решений (СППР), являются основным инструментом повышения обоснованности управленческих решений.

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, основоположник научной школы стратегического планирования Николай Иванович Ведута (1913-1998) . В 1962-1967 гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ - повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов планирования процесса управления. Различают автоматизированные системы управления объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональные автоматизированные системы, например, проектирование плановых расчётов, материально-технического снабжения и т.д.

Цели автоматизации управления

В общем случае, систему управления можно рассматривать в виде совокупности взаимосвязанных управленческих процессов и объектов. Обобщенной целью автоматизации управления является повышение эффективности использования потенциальных возможностей объекта управления . Таким образом, можно выделить ряд целей:

  1. Предоставление лицу, принимающему решение (ЛПР) релевантных данных для принятия решений
  2. Ускорение выполнения отдельных операций по сбору и обработке данных
  3. Снижение количества решений, которые должно принимать ЛПР
  4. Повышение уровня контроля и исполнительской дисциплины
  5. Повышение оперативности управления
  6. Снижение затрат ЛПР на выполнение вспомогательных процессов
  7. Повышение степени обоснованности принимаемых решений

Жизненный цикл АС

Основные классификационные признаки

Основными классификационными признаками , определяющими вид АСУ, являются:

  • сфера функционирования объекта управления (промышленность, строительство, транспорт, сельское хозяйство, непромышленная сфера и т.д.)
  • вид управляемого процесса (технологический, организационный, экономический и т.д.);
  • уровень в системе государственного управления, включения управление народным хозяйством в соответствии с действующими схемами управления отраслями (для промышленности: отрасль (министерство), всесоюзное объединение, всесоюзное промышленное объединение, научно-производственное объединение, предприятие (организация), производство, цех, участок, технологический агрегат).

Функции АСУ

Децентрализованная структура

Построение си­стемы с такой структурой эффективно при автоматизации техно­логически независимых объектов управления по материальным, энергетическим, информационным и другим ресурсам. Такая система представляет собой совокупность нескольких независи­мых систем со своей информационной и алгоритмической базой.

Для выработки управляющего воздействия на каждый объект управления необходима инфор­мация о состоянии только этого объекта.

Централизованная структура

Централизованная структура осуществляет реа­лизацию всех процессов уп­равления объектами в едином органе управления, который осуществляет сбор и обработку информации об управляемых объектах и на основе их анали­за в соответствии с критериями системы вырабатывает управ­ляющие сигналы. Появление этого класса структур связано с увеличением числа контроли­руемых, регулируемых и уп­равляемых параметров и, как правило, с территориальной рассредоточенностью объекта управления.

Достоинствами централизованной структуры являются достаточно простая реализация процессов информационного взаимодей­ствия; принципиальная возможность оптимального управления системой в целом; достаточно легкая коррекция оперативно изменяемых входных параметров; возможность достижения максимальной эксплуатационной эффективности при минимальной избы­точности технических средств управления.

Недостатки централизованной структуры следующие: необхо­димость высокой надежности и производительности технических средств управления для достижения приемлемого качества упра­вления; высокая суммарная протяженность каналов связи при наличии территориальной рассредоточенности объектов упра­вления.

Централизованная рассредоточенная структура

Основная особенность данной структуры - сохранение принципа централизованного управления, т.е. выработка управляющих воздействий на каждый объект управления на основе информации о состояниях всей совокупности объектов управления. Некоторые функциональные устройства системы управления являются об­щими для всех каналов системы и с помощью коммутаторов под­ключаются к индивидуальным устройствам канала, образуя замкнутый контур управления.

Алгоритм управления в этом случае состоит из совокупности взаимосвязанных алгоритмов управления объектами, которые реализуются совокупностью взаимно связанных органов упра­вления. В процессе функционирования каждый управляющий орган производит прием и обработку соответствующей информа­ции, а также выдачу управляющих сигналов на подчиненные объекты. Для реализации функций управления каждый локаль­ный орган по мере необходимости вступает в процесс информа­ционного взаимодействия с другими органами управления. До­стоинства такой структуры: снижение требований, к производи­тельности и надежности каждого центра обработки и управления без ущерба для качества управления; снижение суммарной про­тяженности каналов связи.

Недостатки системы в следующем: усложнение информацион­ных процессов в системе управления из-за необходимости обмена данными между центрами обработки и управления, а также корректировка хранимой информации; избыточность техниче­ских средств, предназначенных для обработки информации; сложность синхронизации процессов обмена информацией.

Иерархическая структура

С ростом числа задач управления в сложных системах значительно увеличивается объем переработанной информации и повышается сложность алгоритмов управления. В результате осуществлять управление централизо­ванно невозможно, так как имеет место несоответствие между сложностью управляемого объекта и способностью любого упра­вляющего органа получать и перерабатывать информацию.

Кроме того, в таких системах можно выделить, следующие, группы задач, каждая из которых характеризуется соответствующими требованиями по времени реакции на события, происхо­дящие в управляемом процессе:

задачи сбора данных с объекта управления и прямого цифрового управления (время реакции, секунды, доли секунды);

задачи экстремального управления, связанные с расчётами желаемых параметров управляемого процесса и требуемых значений уставок регуляторов, с логиче­скими задачами пуска и остановки агрегатов и др. (время реак­ции - секунды, минуты);

задачи оптимизации и адаптивного управления процессами, технико-экономические задачи (время реакции - несколько секунд);

информационные задачи для адми­нистративного управления, задачи диспетчеризации и координа­ции в масштабах цеха, предприятия, задачи планирования и др. (время реакции - часы).

Очевидно, что иерархия задач управления приводит к необхо­димости создания иерархической системы средств управления. Такое разделение, позволяя справиться с информационными трудностями для каждого местного органа управления, порождает необходимость согласования принимаемых этими органами реше­ний, т. е. создания над ними нового управляющего органа. На каждом уровне должно быть обеспечено максимальное соот­ветствие характеристик технических средств заданному классу задач.

Кроме того, многие производственные системы имеют соб­ственную иерархию, возникающую под влиянием объективных тенденций научно-технического прогресса, концентрации и спе­циализации производства, способствующих повышению эффектив­ности общественного производства. Чаще всего иерархическая структура объекта управления не совпадает с иерархией системы управления. Следовательно, по мере роста сложности систем выстраивается иерархическая пирамида управления. Управляе­мые процессы в сложном объекте управления требуют своевремен­ного формирования правильных решений, которые приводили бы к поставленным целям, принимались бы своевременно, были бы взаимно согласованы. Каждое такое решение требует постановки соответствующей задачи управления. Их совокупность образует иерархию задач управления, которая в ряде случаев значительно сложнее иерархии объекта управления.

Виды АСУ

  • Автоматизированная система управления технологическим процессом или АСУ ТП - решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте
  • Автоматизированная система управления производством (АСУ П ) - решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса. Для решения этих задач применяются MIS и MES -системы, а также

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

Темы 10: «Управление процессами, автоматические и автоматизированные системы управления»

дисциплины «Информатика и ИКТ»

для групп первого курса СПО

технический профиль


Или АСУ – комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и тому подобное.

Автоматизированная система управления - совокупность математических методов, технических средств и организационных комплексов, обеспечивающих рациональное управление сложным объектом или процессом в соответствии с заданной целью, а так же коллектив людей объединенных общей целью (например, предприятием, технологическим процессом)..

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, основоположник научной школы стратегического планирования Николай Иванович Ведута (1913-1998). В 1962-1967гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ – повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов планирования процесса управления.

Цели автоматизации управления

Обобщенной целью автоматизации управления является: повышение эффективности, использования потенциальных возможностей объекта управления. Таким образом, можно выделить ряд целей:

1. Предоставление лицу, принимающему решение (ЛПР) адекватных данных для принятия решений.

2. Ускорение выполнения отдельных операций по сбору и обработке данных.

3. Снижение количества решений, которые должно принимать ЛПР.

4. Повышение уровня контроля и исполнительской дисциплины.

5. Повышение оперативности управления.

6. Снижение затрат ЛПР на выполнение вспомогательных процессов.

7. Повышение степени обоснованности принимаемых решений.

В состав АСУ входят следующие виды обеспечений :

Ø информационное;

Ø программное;

Ø техническое;

Ø организационное;

Ø метрологическое;

Ø правовое;

Ø лингвистическое.

Условно модель любой целесообразной деятельности можно представить как систему, состоящую из объекта (познания, управления, трансформации и т.п.) и некоторой воздействующей на него системы - системы управления (СУ). Система управления может быть полностью автоматической, (т.е. взаимодействовать с объектом без участия человека; например, банкомат), неавтоматизированной (т.е. не имеющей в составе компьтер; например, бригада рабочих, роющих траншею), автоматизированной (т.е. содержащей как людей, так и компьютеры; например, автоматизированная система налогообложения).

Функции АСУ в общем случае включают в себя следующие элементы (действия):

Ø планирование и (или) прогнозирование;

Ø учет, контроль, анализ;

Ø координацию и (или) регулирование.


Виды АСУ:

  • Автоматизированная система управления технологическим процессом или АСУ ТП – решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте.
  • Автоматизированная система управления производством (АСУ П ) – решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса.

В составе АСУ выделяют:

- основную часть , в которую входят информационное, техническое и математическое обеспечение;
- функциональную часть , к которой относятся взаимосвязанные программы, автоматизирующие конкретные функции управления.

Системы делятся на примитивные элементарные (для них строятся автоматические системы управления) и большие сложные.

Как уже выше было отмечено, АСУ предназначена для автоматизированной обработки информации и частичной подготовки управленческих решений с целью увеличения эффективности деятельности специалистов и руководителей за счет повышения уровня оперативности и обоснованности принимаемых решений.

Различают два основных типа таких систем: системы управления технологическими процессами (АСУ ТП) исистемы организационного управления (АСОУ). Их главные отличия заключаются в характере объекта управления (в первом случае – это технические объекты: машины, аппараты, устройства, во втором – объекты экономической или социальной природы, то есть, в конечном счете, коллективы людей) и, как следствие, в формах передачи информации (сигналы различной физической природы и документы соответственно).

Следует отметить, что наряду с автоматизированными системами существуют и системы автоматического управления (САУ). Такие системы после наладки могут некоторое время функционировать без участия человека.

САУ применяются только для управления техническими объектами или отдельными технологическими процессами. Системы организационного управления, как следует из их описания, не могут в принципе быть полностью автоматическими. Люди в таких системах осуществляют постановку и корректировку целей и критериев управления, структурную адаптацию системы в случае необходимости, выбор окончательного решения и придание ему юридической силы.

Как правило, АСОУ создаются для решения комплекса взаимосвязанных основных задач управления производственно-хозяйственной деятельностью организаций (предприятий) или их основных структурных подразделений. Для крупных систем АСОУ могут иметь иерархический характер, включать в свой состав в качестве отдельных подсистем АСУ ТП, АС ОДУ (автоматизированная система оперативно-диспетчерского управления), автоматизированные системы управления запасами, оперативно-календарного и объемно-календарного планирования и АСУП (автоматизированная система управления производством на уровне крупного цеха или отдельного завода в составе комбината).

Самостоятельное значение имеют автоматизированные системы диспетчерского управления, предназначенные для управления сложными человеко-машинными системами в реальном масштабе времени. К ним относятся системы диспетчерского управления в энергосистемах, на железнодорожном и воздушном транспорте, в химическом производстве и другие. В системах диспетчерского управления (и некоторых других типах АСУ) используются подсистемы автоматизированного контроля оборудования. Задачами этой подсистемы является измерение и фиксация значений параметров, характеризующих состояние контролируемого оборудования, а сравнение этих значений с заданными границами и информирование об отклонениях.

Отдельный класс АСУ составляют системы управления подвижными объектами , такими как поезда, суда, самолеты, космические аппараты и АС управления системами вооружения.

Так как большие и сложные системы обладают свойством необозримости, то их можно рассматривать с нескольких точек зрения. Следовательно, классификационных признаков тоже много.

Состав АСУ

АСУ состоит из основы и функциональной части. Основу АСУ составляют информационная база, техническая база, математическое обеспечение, организационно-экономическая база. Основа - общая часть для всех задач, решаемых АСУ.

Информационная база АСУ - размещенная на машинных носителях информации совокупность всех данных, необходимых для автоматизации управления объектом или процессом. Обычно информационная база делится на три массива: генеральный, производный и оперативный . Конструкция массивов и их полей (способы размещения на носителях, особенности взаимосвязи данных внутри массива, конкретная компоновка данных и т.д.) определяется типом АСУ и общими характеристиками объектов, для которых она предназначается. Однако целесообразно сохранять типовое конструктивное построение информационной базы для общего класса объектов (например, для машиностроительных предприятий). Генеральный массив объединяет данные, являющиеся общими для всех задач, размещение которых отвечает универсальной структуре, не ориентированной на выполнение какой-либо одной функции управления. Генеральный массив для крупного объекта содержит сотни миллионов символов, занимает большие объёмы запоминающих устройств и не всегда удобен для использования в каждой конкретной задаче, требующей для своего решения специализированной информации. Эта проблема осложняется при мультипрограммной обработке данных и недостаточно ёмких оперативных запоминающих устройствах, предполагающих хранение многих массивов в машинных архивах, функционально разобщённых с процессорами. В связи с этим в реально функционирующих АСУ возникает необходимость формирования производных массивов , отражающих специфику структуры объекта, особенности выполняемых в каждый период функций, частоту повторяемости различных задач и ряд др. факторов, связанных с текущей работой системы. Все производные массивы, как правило, формируются из генерального массива. Всякое устойчивое изменение характеристик обслуживаемого объекта должно быть отражено в генеральном массиве. Оперативный массив охватывает текущую информацию, а также промежуточные результаты вычислений. В нём же размещается первичная информация о состоянии обслуживаемого объекта, поступающая периодически по каналам связи или записанная на носителях. Обработанные и обобщённые данные могут затем вноситься в производный и генеральный массивы либо непосредственно выдаваться потребителю.

Техническая база АСУ включает средства обработки, сбора и регистрации, отображения и передачи данных, а также исполнительные механизмы, непосредственно воздействующие на объекты управления (например, автоматические регуляторы, датчики и т.д.), обеспечивающие сбор, хранение и переработку информации, а также выработку регулирующих сигналов во всех контурах автоматизированного управления производством. Основные элементы технической базы - ЭВМ, которые обеспечивают накопление, хранение и обработку данных, циркулирующих в АСУ. ЭВМ позволяют оптимизировать параметры управления, моделировать производство, подготавливать предложения для принятия решения.

К технической базе АСУ относят также средства оргтехники (копировально-множительную технику, картотеки, диктофоны и т.д.), а также вспомогательные и контрольно-измерительные средства, обеспечивающие нормальное функционирование основных технических средств, требуемых режимах.

Обычно выделяют два класса ЭВМ, используемых в АСУ: информационно-расчётные и учётно-регулирующие.

Информационно-расчётные ЭВМ находятся на высшем уровне иерархии управления (например, в координационно-вычислительном центре завода) и обеспечивают решение задач, связанных с централизованным управлением объектом по основным планово-экономическим, обеспечивающим и отчётным функциям (технико-экономическое и оперативно-производственное планирование, материально-техническое снабжение, сбыт продукции и т.д.). Они характеризуются высоким быстродействием, наличием системы прерываний, слоговой обработкой данных, переменной длиной слова, мультипрограммным режимом работы и т.д., а также широким набором и большим объёмом запоминающих устройств (оперативных, буферных, внешних, односторонних и двусторонних, с произвольным и последовательным доступом).

Учётно-регулирующие ЭВМ , как правило, относятся к нижнему уровню управления. Они размещаются обычно в цехах или на участках, и обеспечивают сбор информации от объектов управления (станков, складов и т.д.), первичную переработку этой информации, передачу данных в информационно-расчётную ЭВМ и получение от неё директивно-плановой информации, осуществление локальных расчётов (например, расписания работы каждого станка и рабочего, графика подачи комплектующих изделий и материалов, группировки деталей в партии, режимов обработки и т.д.) и выработку управляющих воздействий на объекты управления при отклонении режимов их функционирования от расчётных. Особенность учётно-регулирующих ЭВМ - хорошо развитая система автоматического сопряжения с большим числом источников информации (датчиков, регистраторов) и регулирующих устройств. Их вычислительная часть менее развита, поскольку первично обработанная информация передаётся в ЭВМ верхнего уровня для дальнейшего использования и длительного хранения.

Средства сбора и регистрации данных при участии человека включают различные регистраторы производства, с помощью которых осуществляются сбор и регистрация данных непосредственно на рабочих местах (например, в цехе, на участке, станке), а также датчики (температуры, количества изготовленных деталей, времени работы оборудования и т.д.), фиксаторы нарушений установленного технологического и организационного ритма (отсутствие заготовок, инструмента, материалов, неправильная наладка станков, отсутствие транспортных средств для отправки готовой продукции и т.д.).

Средства отображения информации предназначены для представления результатов обработки информации в удобном для практического использования виде. К ним относятся различные печатающие устройства, пишущие машины, терминалы, экраны, табло, графопостроители, индикаторы и т.п. Эти устройства, как правило, непосредственно связаны с ЭВМ или с регистраторами производства и выдают либо регулярную (регламентную), либо эпизодическую (по запросу или в случае аварийной ситуации) справочную, директивную или предупредительную информацию.

Аппаратура передачи данных осуществляет обмен информацией между различными элементами АСУ (между регистраторами производства и ЭВМ, между координационно-управляющим центром и цеховыми ЭВМ и т.д.), а также между АСУ и смежными управления уровнями (например, между АСУП и ОАСУ, между территориальными вычислительными центрами).

Математическое обеспечение АСУ - комплекс программ регулярного применения, управляющих работой технических средств и функционированием информационные базы и обеспечивающих взаимодействие человека с техническими средствами АСУ. Математическое обеспечение условно можно подразделить на систему программирования, операционную систему, общесистемный комплекс и пакеты типовых модулей.

Под организационно-экономической базой понимается совокупность экономических принципов, методов организации производства и управления, схем взаимодействия задач управления на основе правовых документов. Сюда входят организационно-экономический состав и способы формирования технико-экономических показателей управляемого объекта, а также основные принципы повышения эффективности его функционирования и место АСУ в общей системе планирования, учёта и регулирования; организация производства, труда и управления, определяющая рациональную структуру объекта (цеха, отдела и т.д.), порядок реализации технологических маршрутов, наиболее благоприятные условия работы, сохраняющие высокую работоспособность рабочих и служащих, а также научно обоснованную систему управления объектом, чёткие положения о всех подразделениях, их подчинённости, обязанностях сотрудников и их ответственности; организационно-экономическая модель, предусматривающая построение схемы взаимодействия основных задач АСУ, структуры информационного потока, а также методическое обеспечение порядка реализации задач и использования результатов их решения; организационно-правовое обеспечение (правовые основы и нормы создания и использования АСУ, правовой статус циркулирующей в АСУ информации, а также права и ответственность должностных лиц). Кроме того, организационно-экономическая база включает методические и инструктивные материалы, определяющие влияние АСУ на основные показатели функционирования объекта, оценку эффективности и пути дальнейшего развития АСУ.

Функциональная часть АСУ состоит из набора взаимосвязанных программ для реализации конкретных функций управления (планирование, финансово-бухгалтерскую деятельность и др.). Все задачи функциональной части базируются на общих для данной АСУ информационных массивах и на общих технических средствах.

Функциональную часть АСУ принято условно делить на подсистемы в соответствии с основными функциями управления объектом. Подсистемы в свою очередь делят на комплексы, содержащие наборы программ для решения конкретных задач управления в соответствии с общей концепцией системы. Состав задач функциональной части АСУ определяется типом управляемого объекта, его состоянием и видом выполняемых им заданий. Например, в АСУ предприятием часто выделяют следующие подсистемы: технической подготовки производства; управления качеством продукции; технико-экономического планирования; оперативно-производственного планирования; материально-технического обеспечения; сбыта продукции; финансово-бухгалтерской деятельности; планирования и расстановки кадров; управления транспортом; управления вспомогательными службами.


Похожая информация.



Практическое занятие №8


Оборудование: ПК

Теоретические сведения
Автоматизированная система управления или АСУ – комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и тому подобное.
Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, основоположник научной школы стратегического планирования Николай Иванович Ведута (1913-1998). В 1962-1967гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.
Важнейшая задача АСУ– повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов планирования процесса управления.
Цели автоматизации управления
Обобщенной целью автоматизации управления является повышение эффективности использования потенциальных возможностей объекта управления. Таким образом, можно выделить ряд целей:
Предоставление лицу, принимающему решение (ЛПР) адекватных данных для принятия решений.
Ускорение выполнения отдельных операций по сбору и обработке данных.
Снижение количества решений, которые должно принимать ЛПР.
Повышение уровня контроля и исполнительской дисциплины.
Повышение оперативности управления.
Снижение затрат ЛПР на выполнение вспомогательных процессов.
Повышение степени обоснованности принимаемых решений.
В состав АСУ входят следующие виды обеспечений:
информационное,
программное,
техническое,
организационное,
метрологическое,
правовое,
лингвистическое.
Основные классификационные признаки
Основными классификационными признаками, определяющими вид АСУ, являются:
сфера функционирования объекта управления (промышленность, строительство, транспорт, сельское хозяйство, непромышленная сфера и так далее);
вид управляемого процесса (технологический, организационный, экономический и так далее);
уровень в системе государственного управления, включения управление народным хозяйством в соответствии с действующими схемами управления отраслями (для промышленности: отрасль (министерство), всесоюзное объединение, всесоюзное промышленное объединение, научно-производственное объединение, предприятие (организация), производство, цех, участок, технологический агрегат).
Функции АСУ
Функции АСУ в общем случае включают в себя следующие элементы (действия):
планирование и (или) прогнозирование;
учет, контроль, анализ;
координацию и (или) регулирование.
Виды АСУ
Автоматизированная система управления технологическим процессом или АСУ ТП– решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте.
Автоматизированная система управления производством (АСУ П)– решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса.
Примеры:
Автоматизированная система управления уличным освещением («АСУ УО»)– предназначена для организации автоматизации централизованного управления уличным освещением.
Автоматизированная система управления наружного освещения («АСУНО»)– предназначена для организации автоматизации централизованного управления наружным освещением.
Автоматизированная система управления дорожным движением или АСУ ДД– предназначена для управления транспортных средств и пешеходных потоков на дорожной сети города или автомагистрали
Автоматизированная система управления предприятием или АСУП– Для решения этих задач применяются MRP,MRP II и ERP-системы. В случае, если предприятием является учебное заведение, применяются системы управления обучением.
Автоматическая система управления для гостиниц.
Автоматизированная система управления для поликлиник.
Эта АСУ предназначена для организации работы поликлиник, организации врачебного приёма, упрощения записи к врачу в выбранной поликлинике. URL http://www.kmivc.ru/zapis-na-priem-cherez-interent/Автоматизированная система управления операционным риском– это программное обеспечение, содержащее комплекс средств, необходимых для решения задач управления операционными рисками предприятий: от сбора данных до предоставления отчетности и построения прогнозов.



Практическое занятие №8
Тема: АСУ различного назначения, примеры их использования.
Раздел: Информация и информационные процессы
Цели занятия: получить представление об автоматических и автоматизированных системах управления в социально-экономической сфере деятельности.
Оборудование: ПК
Программное обеспечение: MicrosoftOffice 2010: MS Point, Internet Explorer
Содержание работы:
Задание №1.
Просмотрите презентацию «Автоматизированные системы управления» (расположена на сетевом диске компьютера), в которой представлены виды АСУ. С помощью гиперссылок перейдите на web-страницы, в которых приведены примеры автоматизированных систем управления.
В качестве примера автоматизации на производстве просмотрите несколько видеороликов.
Задание №2. Ответить на вопросы:
1) Что называется автоматизированной системой управления? 2) Какую задачу решают автоматизированные системы управления? 3)Какие цели преследуют АСУ? 4)Какие функции осуществляют АСУ? 5) Приведите примеры автоматизированных систем управления. Задание №3. Сделать вывод о проделанной практической работе:


Приложенные файлы

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Нормы выдачи спецодежды для различных профессий: нормативная база, порядок и периодичность выдачи Межотраслевые нормы выдачи спецодежды по профессиям Нормы выдачи спецодежды для различных профессий: нормативная база, порядок и периодичность выдачи Межотраслевые нормы выдачи спецодежды по профессиям Московский государственный университет печати Московский государственный университет печати Реферат Подъёмная сила крыла самолёта Факторы, влияющие на подъёмную силу крыла самолёта Реферат Подъёмная сила крыла самолёта Факторы, влияющие на подъёмную силу крыла самолёта